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BACKGROUND: The Global Burden of Disease (GBD) study, coordinated by the Institute for Health Metrics and Evaluation (IHME), produces influen-
tial, data-driven estimates of the burden of disease and premature death due to major risk factors. Expanded quantification of disease due to environ-
mental health (EH) risk factors, including climate change, will enhance accuracy of GBD estimates, which will contribute to developing cost-
effective policies that promote prevention and achieving Sustainable Development Goals.

OBJECTIVES: We review key aspects of the GBD for the EH community and introduce the Global Burden of Disease–Pollution and Health Initiative
(GBD-PHI), which aims to work with IHME and the GBD study to improve estimates of disease burden attributable to EH risk factors and to develop
an innovative approach to estimating climate-related disease burden—both current and projected.
METHODS:We discuss strategies for improving GBD quantification of specific EH risk factors, including air pollution, lead, and climate change. We
highlight key methodological challenges, including new EH risk factors, notably evidence rating and global exposure assessment.
DISCUSSION: A number of issues present challenges to the scope and accuracy of current GBD estimates for EH risk factors. For air pollution, mini-
mal data exist on the exposure–risk relationships associated with high levels of pollution; epidemiological studies in high pollution regions should be
a research priority. For lead, the GBD’s current methods do not fully account for lead’s impact on neurodevelopment; innovative methods to account
for subclinical effects are needed. Decisions on inclusion of additional EH risk–outcome pairs need to be guided by findings of systematic reviews,
the size of exposed populations, feasibility of global exposure estimates, and predicted trends in exposures and diseases. Neurotoxicants, endocrine-
disrupting chemicals, and climate-related factors should be high priorities for incorporation into upcoming iterations of the GBD study. Enhancing the
scope and methods will improve the GBD’s estimates and better guide prevention policy. https://doi.org/10.1289/EHP5496
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Introduction
The Global Burden of Disease Study (GBD), coordinated by the
Institute for Health Metrics and Evaluation (IHME), has emerged
as the largest systematic, data-driven effort to quantify the magni-
tude of health loss from all major diseases and injuries. GBD esti-
mates have influenced global public health research, policy,
education, and action on a wide range of diseases and risk factors.
Examples of these data-driven impacts are the initiation of free
short-term depression therapy in Australia, restructuring of health
insurance coverage to align with major causes of disease in
Mexico, and construction of new roads and retraining of police to
address the high burden of traffic injuries in Iran (Smith 2015).

IHME’s comparative risk assessments have focused attention
on the magnitude of the global burden of disease caused by air
pollution since 2010, alongside other major health risk factors
such as smoking, diet, and obesity (WHO 2019). These estimates
placed reduction of exposure to ambient and household air pollu-
tion squarely on the global health agenda, eliciting high-level
government responses in China and India, and provide key met-
rics for several Sustainable Development Goals (SDGs). In its
2017 publication, the Lancet Commission on Pollution and
Health used 2015 GBD data to calculate that the combined pollu-
tion of air, water, and soil by chemicals was responsible for 268
million disability-adjusted life-years (DALYs) and 9 million pre-
mature deaths each year—more than 3 times the total annual
deaths caused by HIV/AIDS, tuberculosis, and malaria—with the
greatest burden in low- and middle-income countries (LMICs)
(Landrigan et al. 2018a). The 2017 GBD study estimated that
specific environmental health (EH) risk factors accounted for
8.32 million deaths and 308 million DALYs (Stanaway et al.
2018). Meanwhile, the World Health Organization (WHO),
which had been making its own estimates of the global burden of
disease parallel to IHME, produced data for environmental
impacts in 2017 that were in a similar range (Prüss-Ustün et al.
2017); shortly thereafter, WHO and IHME signed an agreement
to collaborate, jointly making all GBD estimates going forward.

Although large, these estimates capture only a fraction of the
burden associated with the limited EH risk factors included in the
GBD analysis: certain air pollutants, water, lead, and occupa-
tional exposures. In response, the Global Burden of Disease–
Pollution and Health Initiative (GBD-PHI) was formed. This new
initiative aims to work with the GBD to improve and expand esti-
mates of the global burden of disease attributable to an expanded
set of EH risk factors, including current and projected climate-
related disease burden. Here, we provide an overview of the
GBD to the EH community and then articulate some of the ideas,
challenges, and opportunities associated with the GBD-PHI,
which were discussed at an inaugural workshop in March 2018
(Hu et al. 2018) and have been the subject of ongoing discus-
sions. We outline an ambitious research agenda for the GBD-
PHI, first by providing an overview of GBD methods for estimat-
ing exposure to risk factors and the associated burden, followed
by a focus on air pollution and lead as two case studies. We then
discuss the challenges and opportunities associated with grading
the evidence for causality and combining these considerations to
rank and prioritize EH risk factors for inclusion in the GBD.
Finally, we discuss neurotoxicants and endocrine disrupting
chemicals (EDCs) as examples of likely high-priority classes of
candidates for inclusion in the GBD, and we consider the special
challenges of estimating the burden of disease and death related
to climate change. A summary of the proposed research agenda
and recommendations is provided in Appendix 1.

As stated in the GBD Protocol, “an uncertain estimate . . . is
preferable to no estimate because no estimate is often taken
to mean no health loss from that condition” (IHME 2018).

Ultimately, by more fully documenting the current and antici-
pated impacts and risks of EH exposures on the burden of disease
and death at the subnational, national, and international scales,
countries will be better able to prioritize pollution control invest-
ments that promote long-term stability, growth, and prosperity.

GBD Overview and Existing EH Risk Factors
A full description of the GBD, GBD methods, and the most
recent assessment of risk factors and associated burden for 195
countries and territories can be found in recent publications and
associated appendices (James et al. 2018; Kyu et al. 2018; GBD
2017; Roth et al. 2018; Stanaway et al. 2018). Briefly, the GBD
is coordinated by the IHME with the assistance of a network of
more than 3,600 researchers in more than 145 countries. Using a
comparative risk assessment approach, it organizes behavioral,
environmental, occupational, and metabolic risk factors into five
hierarchical levels. Level 0 includes the aggregated estimates for
all risk factors combined. Level 1 includes three risk groups: a)
environmental and occupational risks, b) metabolic risks, and c)
behavioral risks. Each subsequent level includes more-detailed
risk factors that are nested within the broader category above it
(Figure 1).

Each risk factor is associated with one or more outcomes,
and each combination of risk factor and outcome is referred to
as a risk–outcome pair. Risk–outcome pairs are assessed for
inclusion based primarily on two factors: a) the strength of evi-
dence for a causal association between the risk and outcome,
and, b) the feasibility of developing the necessary globally com-
plete estimates of exposure levels. The process for assessing
causal evidence focuses on identifying, screening, rating, and
analyzing epidemiological studies, concluding with a weight of
evidence determination following the World Cancer Research
Fund criteria (World Cancer Research Fund/American Institute
for Cancer Research 2018); the feasibility of estimating expo-
sures is assessed based on available data, predictive covariates,
and analytical methods. Risk–outcome pairs that are judged to
meet the above criteria are presented for final review for ap-
proval by the GBD Scientific Council composed of subject-
matter experts (IHME).

To calculate the attributable burden for each risk–outcome
pair, the GBD requires for all locations: a) a burden estimate for
the outcome [e.g., number of deaths, years of life lost (YLL), and
DALYs]; b) spatially and temporally resolved exposure estimates
for the risk factor; c) the counterfactual or theoretical minimum
risk exposure level (TMREL); and d) the relative risk (i.e., expo-
sure–response relationship) for the outcome, relative to the
TMREL. The population attributable fraction (PAF) is defined as
the proportion of the outcome, for a given population and year,
that would be eliminated if the risk factor were reduced to the
TMREL, and it is calculated from the last three of the aforemen-
tioned inputs. Risk-attributable disease burden is estimated for
each risk–outcome pair by age group, sex, and location. GBD
locations are arranged in a hierarchy: in GBD 2017, 195 coun-
tries and territories are nested within 21 regions, which in turn,
are within 7 super-regions. Subnational estimates are made for
countries with populations larger than 200 million as well as a
select set of other countries.

To calculate years lived with disability (YLDs), GBD employs
disability weights to quantify the severity of the health loss associ-
ated with different health states. Beginning in GBD 2010, the
assignment of disability weights has involved an iterative ranking
process whereby members of the general public are given descrip-
tions of sequelae from two health states using nonclinical terminol-
ogy and asked to rate which set of sequelae connotes a healthier
individual. Results are analyzed to assess agreement between
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participants on pairings and then weights are generated on a scale
from 0 to 1, where 0 indicates no health loss, and 1 indicates total
health loss (i.e., equivalent to death) (Haagsma et al. 2015;
Salomon et al. 2015). In GBD 2017, disability weights were esti-
mated for 234 unique health states (Stanaway et al. 2018).

The GBD uses a number of approaches to deal with complex
statistical challenges, such as the incorporation of data that are
uneven in uncertainty and distribution within time intervals, vary
across time intervals, are prone to gaps in the data sequence over
time, or that follow nonlinear trends. Specific examples and
detailed explanations are provided in the appendices of the most
recent publication (Stanaway et al. 2018).

In the most recent iteration, 84 behavioral, environmental/
occupational, and metabolic risks or risk groups were evaluated,
and burden was estimated for 476 risk–outcome pairs. The specific
EH risk factors included in this assessment were unsafe water, san-
itation, and handwashing; air pollution [ambient ozone and fine
particulate matter (PM2:5), and household PM2:5]; residential ra-
don; lead; and occupational exposures to carcinogens (asbestos, ar-
senic, benzene, beryllium, cadmium, chromium, diesel exhaust,
formaldehyde, nickel, polycyclic aromatic hydrocarbons, silica,
sulphuric acid, trichloroethylene), as well as occupational asthma-
gens, particulate matter (PM)/gases, noise, injuries, and ergonomic
factors. These EH risk factors were estimated to contribute to 8.32
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Figure 1. Global Burden of Disease Study (GBD) risk factor hierarchy (adapted from Stanaway et al. 2018).
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million deaths and 308 million DALYs in 2017, in comparison
with 8.15 million deaths and 345 million DALYs in 2007
(Stanaway et al. 2018). Given that most EH risk–outcome pairs
cannot be assessed by randomized controlled trials (RCTs), the hi-
erarchy of evidence involves assessing and weighing the results of
prospective observational cohort and case–control studies that
meet quality control standards (Table 1).

Discussion
In the following discussion, we have deliberately chosen to focus
on environmental pollutants to which the general population is
exposed, using air pollution and lead as case studies of EH risk fac-
tors currently incorporated in the GBD, aswell as climate change. In
so doing, we acknowledge that the communicable diseases associ-
ated with sanitation, hygiene, and unsafe water account for a large
proportion of the GBD associated with the environment and remain
a major global environmental health challenge for much of the
world. Similarly, we acknowledge that occupational hazards exist
throughout the world. However, we argue that these risk factors are
relativelywell-established and recognized, whereas, by comparison,
environmental pollutants and their impacts on populations remain
relatively under-recognized, with the vast majority entirely unac-
counted for.

Case Studies of Current EH Risk Factors in the GBD
Air pollution. The GBD has included estimates of disease and
premature death due to air pollution since 1990; major urban
areas were included in GBD 2000 and extended to the global

population in GBD 2010 (Lim et al. 2012; Murray et al. 2012),
when the current methods for estimating exposure and risk were
introduced. These innovations produced estimates of burden that
ranked air pollution exposure as one of the leading risk factors
for premature mortality globally. With each update, the GBD
incorporates new exposure and epidemiological data and methods
to improve the quality and scope of its estimates. The GBD’s
partnership with the Health Effects Institute (HEI), among other
collaborators, has been instrumental in this work.

The GBD currently estimates the burden attributable to air
pollution exposure for three categories: ambient PM2:5, ambient
ozone, and PM2:5 from household use of solid fuels for cooking
(Chen et al. 2008; Hoek et al. 2013). These three risk factors are
globally measurable exposures that represent largely (though not
entirely) independent sources contributing to the disease burden
attributable to air pollution. Ambient PM2:5 is the most robust
predictor of mortality in studies of long-term exposure to air pol-
lution. Ozone, a gas produced in photochemical atmospheric reac-
tions of precursor emissions, is independently (from PM2:5)
associated with respiratory disease (Malley et al. 2017; Turner et al.
2016). Household air pollution from the use of solid fuels for cook-
ing, although contributing to ambient PM2:5, is itself a disease risk
factor, independent of the surrounding outdoor pollution levels
(Bruce et al. 2015; Fatmi and Coggon 2016; Gordon et al. 2014).
Details on exposure estimation have been published previously
(Cohen et al. 2017; Shaddick et al. 2018a; Stanaway et al. 2018).
Briefly, population-weighted annual average exposure to ambient
PM2:5 is informed by chemical transport models and remote sensing
estimates produced at 11 kilometer ðkmÞ×11 km spatial resolution

Table 1. Summary of epidemiological evidence used to determine risk–outcome relationships for unsafe water, air pollution, radon, and lead in the Global
Burden of Disease Study (GBD) 2017 (adapted from Stanaway et al. 2018).

Risk factor Outcome

Study type

RCTs (n)
Prospective observational

studies (n)
Case–control
studies (n)

Unsafe water, sanitation, and handwashing
Unsafe water source – chlorination or solar
(point of use treatment)

Diarrheal diseases 25 6

Unsafe water source – piped Diarrheal diseases 1 9
Unsafe water source – filter Diarrheal diseases 11 2
Unsafe water source – improved water Diarrheal diseases 0 5
Unsafe sanitation – piped Diarrheal diseases 0 7
Unsafe sanitation – improved sanitation Diarrheal diseases 1 11
No access to handwashing facility Diarrheal diseases 19 0
No access to handwashing facility Lower respiratory infections 8 11
Air pollution: Particulate matter pollution
Ambient particulate matter pollution Lower respiratory infections 0 17
Ambient particulate matter pollution Tracheal, bronchus, and lung cancer 0 30
Ambient particulate matter pollution Ischemic heart disease 0 16
Ambient particulate matter pollution Ischemic stroke 0 30
Ambient particulate matter pollution Intracerebral hemorrhage 0 30
Ambient particulate matter pollution Subarachnoid hemorrhage 0 30
Ambient particulate matter pollution Chronic obstructive pulmonary disease 0 12
Ambient particulate matter pollution Diabetes mellitus type 2 0 8
Household air pollution from solid fuels Lower respiratory infections 2 8 17
Household air pollution from solid fuels Tracheal, bronchus, and lung cancer 0 0 28
Household air pollution from solid fuels Ischemic heart disease 0 2 2
Household air pollution from solid fuels Ischemic stroke 0 1
Household air pollution from solid fuels Intracerebral hemorrhage 0 1
Household air pollution from solid fuels Subarachnoid hemorrhage 0 1
Household air pollution from solid fuels Chronic obstructive pulmonary disease 0 0 11
Household air pollution from solid fuels Diabetes mellitus type 2 0 1
Household air pollution from solid fuels Cataract 0 0 8
Ambient ozone pollution Chronic obstructive pulmonary disease 0 3
Other environmental risks
Residential radon Tracheal, bronchus, and lung cancer 0 1 29
Lead exposure Idiopathic developmental intellectual disability 0 8
Lead exposure Systolic blood pressure 0 3 1

Note: See original table for primary references. (Adapted from Appendix 1, Table 1 Stanaway et al. 2018).
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with calibration to ground-level measurements (including theWHO
Global Urban Ambient Air Pollution Database) (Shaddick et al.
2018a; Shaddick et al. 2018b; Stanaway et al. 2018; Van Donkelaar
et al. 2016). Ozone exposure is based on a fusion of multiple chemi-
cal transport model estimates and available ground monitoring data
to estimate the maximum seasonal (6-month) mean of daily 8 h
maximum concentrations for each grid cell (Chang et al. 2019).
Household PM2:5 exposure is estimated from survey data about
solid cooking fuel use andmeasurements of PM2:5 concentrations in
households using solid fuels for cooking (IHME and World Bank
Group 2016). Recent revisions to the GBD methods have reduced
the potential for double-counting of disease burden from household
and ambient air pollution in locations where both risks are present.
The combined burden from the two risk factors is first estimated and
then split in proportion to their contributions to exposure levels.
This revision led to decreases in the burden attributable to both of
these risk factors. Other air pollutants, such as nitrogen dioxide
(NO2), may be included in future cycles of the GBD as global expo-
sure estimates become available (Larkin et al. 2017) and evidence
on their role as independent risk factors accumulates. For exam-
ple, a recent estimate suggests that nearly 15% of global pediatric
asthma incidence was attributable to NO2 (Achakulwisut et al.
2019).

Exposure estimates for a given population are then combined
with cause-specific exposure–response functions to calculate the
corresponding PAF (Stanaway et al. 2018). The exposure–
response functions for ambient and household PM2:5 are derived
from relative risk (RR) estimates for mortality from ischemic heart
disease (IHD), stroke, lung cancer, chronic obstructive pulmonary
disease (COPD), lower respiratory infections (LRI), and Type
II diabetes from published cohort and case–control studies.
Nonlinear functions were fit to RR estimates from studies of expo-
sure to ambient PM, household air pollution, secondhand smoke,
and active smoking to characterize exposure–response functions
for exposure to PM2:5 across the globally observed range [the
Integrated Exposure–Response function (IER)] (Burnett et al.
2014; Cohen et al. 2017). The most recent estimate based on the
IER was that 4.6 (UI 4.1–5.0) million deaths were attributable to
ambient and household PM2:5 in 2017 (Stanaway et al. 2018). A
novel risk function based only on epidemiological studies of ambi-
ent PM2:5 suggests that the IERmay underestimate the attributable
burden due to differences in the shape of the risk function and addi-
tional diseases not currently included in the GBD (Burnett et al.
2018; Lelieveld et al. 2019). The risk function for ozone exposure
is derived from a meta-analysis for COPD based on data from
cohort studies in the United States, Canada, and the United
Kingdom. Increasing exposure and the updated risk function for
ozone brought the number of deaths worldwide from ambient
ozone in the most recent iteration of GBD to more than 471 (UI
177–767) thousand (Stanaway et al. 2018).

Limitations and potential approaches. Although existing
approaches provide critical air pollution estimates to inform
policy-making, opportunities exist to facilitate targeted research—
from within IHME and from the broader EH community—to
improve burden estimates (see Appendix 1), particularly with
respect to the response relationships in high- and low-exposure
environments, the potential joint effects of exposures, the IER, dif-
ferential toxicity, and source attribution.

Additional epidemiological studies in both high and low air
pollution regions are needed to support estimation of relative risk
across the global range of exposure and more accurately estimate
TMRELs. Currently, most data come from studies conducted in
high-income countries (HICs), which have lower air pollution in
comparison with LMICs. The use of secondhand and active
smoking data to help inform the shape of the risk curve at the

high end of the PM2:5 exposure range is suboptimal; cohort stud-
ies in countries at the upper end of the ambient exposure range
are needed to minimize extrapolation and reliance on smoking
data. As air pollution declines to even lower levels in HICs, stud-
ies of the effects of these exposures are also needed to more accu-
rately and precisely estimate the magnitude and shape of
exposure response relationships. Recently published Chinese
studies (Yin et al. 2017), alternative exposure–response functions
(Burnett et al. 2018), and on-going research on effects of expo-
sure to low levels of ambient air pollution by the HEI have begun
to fill these needs. Further work should be encouraged and sup-
ported. Evaluation of the shape of the concentration–response
relationship at low concentrations is currently an area of active
research (Di et al. 2017; Pinault et al. 2016).

Additional efforts could further refine estimates of the inde-
pendent and joint effects attributable to household and ambient
air pollution (Turner et al. 2014; Turner et al. 2017; Yu et al.
2018). For settings with widespread household burning of solid
fuels for cooking and heating, periodic exchange between house-
hold and ambient exposures results in substantial interdepend-
ence. The recent revisions to the GBD methods described above
could be additionally refined by quantifying the extent of overlap
between household and ambient concentrations, which would
require estimates of dirty fuel use and indoor ventilation at a spa-
tial resolution equivalent to the ambient air pollution exposure
data. Data sets like the Demographic and Health Surveys (DHS)
or Multiple Indicator Cluster Surveys (MICS) contain these vari-
ables or proxies, and there are established methods for producing
estimates at the current resolution of GBD PM2:5 estimates
(Graetz et al. 2018). Similar approaches could also be extended
to address the overlap between exposure to ambient PM2:5 and
secondhand smoke, another important EH risk factor whose at-
tributable burden is estimated using the IER approach.

The IER is a central aspect of the GBD estimations. A key
assumption of the IER, and consistent with assessments conducted
by theWHO (WHORegional Office for Europe 2013) and the U.S.
Environmental Protection Agency (U.S. EPA) (U.S. EPA 2018), is
that the magnitude of risk is a function of PM2:5 mass alone. In
other words, all particles are equally toxic on a per-unit mass basis,
regardless of composition or source. Although some data suggest
that PM2:5 may exhibit differential toxicity depending on combus-
tion source (Thurston et al. 2016; Zanobetti et al. 2009), there is
currently insufficient evidence to move beyond the assumption of
equitoxicity or create source-specific exposure–response functions
(Lippmann et al. 2013; Pope et al. 2018; Stanek et al. 2011).
Further research by the broader EH community, to be leveraged by
the GBD, is needed to help advance this area. Although it would
require both additional evidence and methodological work to de-
velop separate exposure–response functions for different profiles
of PM and more accurately characterize mixtures across the world
at sufficient resolution, a binned approach, whereby prototypical
air pollution profiles are developed to represent the most common
mixtures, may represent a manageable path forward. Prioritization
of this effort should be based on the size of the exposed popula-
tions; for example, windblown mineral dust (e.g., from deserts)
constitute a large fraction of PM in many parts of the world,
Evidence is emerging to indicate that such exposures increase mor-
tality risk; however, the relative toxicity of desert dust in compari-
sonwith other PM is uncertain (Karanasiou et al. 2012).

An alternative approach to obtaining source-specific burden
estimates is based on emissions and chemical transport modeling
in which the fraction of the total particle mass attributable to a
given source or sector is used to apportion exposure and, ulti-
mately, burden (Conibear et al. 2018). This approach has been
applied to estimate the burden of disease attributable to major
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sources globally (Lelieveld et al. 2015), including in India and
China (GBD MAPS Working Group 2016, 2018). Expansion of
this analysis to other regions is feasible and would provide
knowledge that is critical to identifying the specific sources
whose control could contribute most to reductions in exposure
and improvements in population health.

Lead. Impacts of lead exposure on disease and death have
been included in the GBD since 2003. These data have included
estimates of lead’s impacts on intellectual impairment (in terms
of IQ decrements meeting criteria for intellectual disability,
defined as an IQ below 85 points), on cardiovascular outcomes
mediated through increases in blood pressure (Ezzati et al. 2004;
Fewtrell et al. 2004), and on the development of chronic kidney
disease (Bowe et al. 2018). The primary exposure metric used
previously had been log-normal distributions of blood lead con-
centrations (B-Pb) across populations based on published studies.
Since GBD 2016, ensemble modeling techniques (which synthe-
size the results of different analytical models) have been used to
find an optimal global distribution shape by fitting a variety of
distributions to the available blood lead and generating a
weighted average of those distributions based on fit. GBD uses
spatiotemporal Gaussian process regression (ST-GPR) to esti-
mate B-Pb for all age groups, locations, and years. Where no data
are available, estimates are informed by data from neighboring
countries, and four covariates: a) use of leaded gasoline, b) num-
bers of two- and four-wheeled vehicles per capita, c) proportion
of each location’s population living in an urban area, and d)
the sociodemographic index (IHME, http://www.healthdata.org/
taxonomy/glossary/socio-demographic-index-sdi) of the location
(Stanaway et al. 2018). Data from primarily urban or rural loca-
tions (these data did not reflect the nationwide urban/rural distri-
bution) were adjusted to more accurately reflect the expected
national-level mean B-Pb levels, using the country’s urbanicity
as a covariate when estimating the adjustment. The GBD cur-
rently uses a B-Pb TMREL of 2:0 lg=dL.

The risk of intellectual disability associated with lead expo-
sure is based on a pooled analysis of exposure–IQ decrement
relationships in which losses of IQ points are converted into esti-
mated numbers of cases of intellectual disability. Intellectual dis-
ability is classified into five levels of severity and associated
disability weights (DW) are assigned: borderline (IQ 70 to 85;
DW=0:011), mild (IQ 50 to 69; DW=0:043), moderate (IQ 35
to 49; DW=0:1), severe (20 to 34; DW=0:16), and profound
(IQ 0 to 19; DW=0:2).

The association between lead and blood pressure was initially
based on meta-analyses involving large cross-sectional studies of
lead and blood pressure, such as the U.S. Second National Health
and Nutrition Examination Survey (NHANES II). The distribu-
tion of population B-Pbs linked to increased blood pressure was
then combined with the relative risk for each blood pressure level
to calculate the attributable fraction of cardiovascular disease
(CVD) attributable to lead. These approaches were modified for
GBD 2010 to estimate the association between bone lead levels
and CVD outcomes as meditated through increases in systolic
blood pressure. This modification was based on recent research
demonstrating that bone lead levels, an indicator of exposure
accumulated over decades that can now be measured noninva-
sively using K-X-ray fluorescence, are better than B-Pb at pre-
dicting CVD and other adult health outcomes (Navas-Acien et al.
2008) (Hu et al. 1998). Because population data on bone lead lev-
els were available for only a few countries, bone lead levels were
calculated by estimating secular trends in blood lead levels in
each geography, integrating blood lead levels over time to gener-
ate a cumulative blood lead index (CBLI) metric, and applying
an empirically derived factor to convert CBLI into bone lead

levels (Hu et al. 2007). National and subnational data on blood
lead levels are available in most countries, but many, particularly
in Africa and Central Asia, continue to lack data (see Figure 2).

The most recent iteration of the GBD has estimated that
global lead exposure is responsible for 2.5 million DALYs from
intellectual disability, 1.3 million DALYs from chronic kidney
disease, and 20.6 million DALYs from CVD (Stanaway et al.
2018).

Limitations and potential approaches. Despite its expan-
sion to include full and borderline intellectual disability, the
DALY-based GBD accounts for only a subset of the intellectual
impairment due to lead. Thus, whereas GBD calculates incremen-
tal loss of IQ from lead exposure beginning at a TMREL of
2 lg=dL (Stanaway et al. 2018), contributions to DALYs are
counted only for those individuals whose loss of IQ results in an
IQ score below 85. However, as discussed recently by Bellinger
(Bellinger 2018), decrements in IQ across the entire distribution
result in reduced economic productivity, lowered educational
potential, and diminished well-being. In addition, when the pro-
cess of assigning DWs within the GBD Study changed in 2010,
the weights for intellectual disability decreased across the board,
with, for example, the disability weight associated with mild
impairment (IQ 50–69) downgraded from 0.29 to, as noted
above, 0.043, an 85% reduction (WHO 2013). This decrease may
reflect discordance with respect to definitions of health and per-
spectives on whether intellectual impairment should be consid-
ered a disease.

How might GBD methods be modified to better capture the
full impact of lead exposure on individual and societal health
(Appendix 1)? It could be argued that any approach should
consider the extent to which exposure limits an individual’s edu-
cational, occupational, and social potential throughout life
(Bellinger 2018). Because these outcomes extend beyond tradi-
tional (medically based) notions of health and disease, an alterna-
tive method would be to use a human capital approach (Becker
1962), which assigns monetary value to direct and indirect costs
to individuals and society due to adverse outcomes, including but
not limited to health. IHME has recently produced estimates of
measured and expected human capital across the globe (Foreman
et al. 2018; Lim et al. 2018), through the creation of an index that
integrates data on educational attainment (average years of edu-
cation), education quality or learning (test scores), functional
health (conditions linked to productivity, including poor growth,
anemia, cognitive impairment, sensory impairments, certain com-
mon infectious diseases), probability of survival to age 5, and of
survival from age 20 to age 64. Using this approach, the impact
of lead could be applied to educational attainment and learning,
given the substantial literature linking IQ to years of schooling
and extensive research documenting associations between blood
lead and standardized test scores (Amato et al. 2012; Blackowicz
et al. 2016; Liu et al. 2013; Magzamen et al. 2013; McLaine et al.
2013; Zhang et al. 2013). Alternatively, a hybrid approach could
build on the existing GBD framework, quantifying the subclinical
effects of developmental neurotoxicants and then assigning a
monetary value to these effects. This strategy has been used to
quantify the economic effects of population exposures to lead
(Grosse et al. 2002) and EDCs (Trasande et al. 2016). Monetary
values could be based on the Value of a Life Year (VOLY)
(Desaigues et al. 2011), adjusted for purchasing-power parity
(PPP) (Taylor 2003).

GBD estimates of the burden of CVD attributable to lead cur-
rently include the effects of lead on CVD only as they are medi-
ated through blood pressure, with a threshold for effects
beginning at B-Pbs of 5 lg=dL. However, a recent study using
updated NHANES data demonstrated that an increase in B-Pbs
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from 1:0 lg=dL to 6:7 lg=dL was associated with an increase in
all-cause mortality even after adjusting for blood pressure, with
effect magnitudes several multiples greater than current GBD
estimates (Lanphear et al. 2018). Similarly, a community-based
prospective study of men in Boston, Massachusetts, found that
even after adjusting for hypertension and other covariates, cumu-
lative lead was associated with increased risk of CVD mortality
(Weisskopf et al. 2009). That lead likely has a direct effect on the
cardiovascular system apart from effects on blood pressure is sup-
ported by numerous mechanistic studies demonstrating direct
effects on heart muscle function, atherosclerosis, and the heart’s
conduction system (Navas-Acien et al. 2007). These findings sug-
gest that the GBD may need to additionally account for evidence
indicating that lead’s effects on CVD are exerted directly, as well
as through blood pressure.

The current TMREL of 2:0 lg=dL should also be reconsid-
ered. Research suggests that preindustrial B-Pb levels were likely
well below 1 lg=dL (Flegal and Smith 1992; Patterson et al.
1991; Smith and Flegal 1992). Mean B-Pb levels in some popula-
tions have recently declined to below 1 lg=dL: For example, the
latest published B-Pb levels among participants of the U.S.
NHANES showed a mean level of 0:84 lg=dL in the period
2013–2014 (Tsoi et al. 2016). In addition, the most recent
research on B-Pb–IQ and B-Pb–CVD relationships demonstrates
a slope that is steepest and begins at the lowest measurable levels
(down to 1 or 2 lg=dL) (Evens et al. 2015; Hu et al. 2006;
Kordas et al. 2006; Lanphear et al. 2005; Schneider et al. 2003;
Wasserman et al. 2003). Lowering the TMREL from 2 to
1 lg=dL therefore deserves serious consideration.

Finally, despite being one of the most studied EH risk factors,
B-Pb data are sparse or absent in dozens of countries, particularly

in Africa and Asia, where development and industrialization are
occurring rapidly (Figure 2). Although current exposure estimation
methods are laudable, the potential exists to further expand the
consortium of GBD collaborators to include researchers with
unpublished data [such as national surveillance data on over
25,000 blood lead levels in China (Yan 2018)] and researchers
who could add B-Pbmeasurement to existing or future population-
based surveys. In the meantime, additional strategies could be
adopted to improve B-Pb estimates.

Methods for Grading Evidence and Exposure Assessment,
and Prioritizing EH Risk Factors
Many well-established EH risk-outcome pairs are not included in
the GBD. Examples include methylmercury and intellectual dis-
ability (Grandjean and Landrigan 2014; Trasande et al. 2005),
nitrogen dioxide and asthma (Achakulwisut et al. 2019; Anenberg
et al. 2018), and PM2:5 and low birth weight (Dadvand et al. 2013;
Fleischer et al. 2014). Although amain factor in the GBD’s success
is its rigor, impartiality, and standardization for establishing new
risk–outcome pairs, there are challenges associated with incorpo-
rating new EH risk factors, as well as general limitations inherent
in the GBD, that require consideration. Critical among the latter is
the practical reality that the process of adding a new risk–outcome
pair to the GBD is typically labor-intensive and thus undertaken
only if the additional necessary resources are available. By con-
trast, the scope of pollution is enormous; Rusch and Hare (2014)
estimated that there are 25,000–84,000 chemicals in commerce in
the United States (Rusch and Hare 2014). A further issue, as noted
earlier, is that most EH risk–outcome pairs cannot be assessed by
RCTs, thereby placing a stronger emphasis on the results of
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Figure 2.Map of unique country, source, and years of data on blood lead levels for the Global Burden of Disease Study (GBD) (Stanaway et al. 2018).
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observational studies and also raising the issue of whether evidence
from animal and in vitro studies deserve consideration in the GBD.

Nomination process for EH risk factors. The current process
for including new risk–outcome pairs is based on input from col-
laborators, followed by considering available exposure informa-
tion, systematic reviews, and evidence scoring, and then approval
from the GBD Scientific Council (IHME 2016). With the creation
of the GBD-PHI, we propose forming an EH Risk Factors
Nomination Working Group (EH Working Group) to work in
partnership with the GBD to ensure a systematic process for con-
sidering data to support the inclusion of new EH risk–outcome
pairs and updated information (including new disease linkages)
for existing risk factors. This group would be responsible for
reviewing literature on EH exposures and risk–outcome pairs and
nominating selected pairs for consideration. As a first step, the
EH Working Group could identify candidates from existing clas-
sifications or listings from authoritative bodies. Examples include
International Agency for Research on Cancer (IARC) mono-
graphs, the European Chemicals Agency (ECHA) Candidate List
of substances of very high concern, the National Toxicology
Program (NTP) Office of Health Assessment and Translation
(OHAT) reports, California’s Proposition 65 listings, U.S. EPA’s
Integrated Risk Information System (IRIS) reports, and Project
TENDR’s consensus statement (Bennett et al. 2016). We recom-
mend prioritizing new risk factors based on strength of evidence
of causality with one or more health outcomes, the size of
exposed populations, the feasibility of global exposure estima-
tion, and predicted trends in exposures and relevant diseases.
Linking an existing risk factor, for which the GBD already has
exposure information, to a new disease is easier and may be a
more practical starting point with respect to EH expansion. Table
2 depicts a nonexhaustive list of risk factor–disease pairs that
may be ready for consideration based on the criteria above.

Causality and evidence scoring criteria. After nomination,
EH risk–outcome pairs would be subject to the same criteria used

for other risk–outcome pairs in the GBD. To date, GBD has used
the World Cancer Research Fund evidence grading system (World
Cancer Research Fund/American Institute for Cancer Research
2018), with “convincing” or “probable” evidence as a requirement
for inclusion. Causal criteria include consideration of study design,
relative risk, dose–response relationship, biological plausibility,
and analogy (Stanaway et al. 2018). GBD’s current system gives
greatest weight to RCTs, which, for ethical and practical reasons,
are only possible for very few EH exposures (e.g., clean cook
stoves, energy interventions to reduce household air pollution)
(Smith et al. 2011; Allen et al. 2015). Observational studies are the
primary epidemiologicmethod for EH. Careful design canmitigate
many concerns about residual confounding even in the absence of
a priori randomization, such as the application of causal modeling
techniques (Rothman et al. 2008; Zeger et al. 2000). In addition,
the U.S. NTP and others have adapted systematic review frame-
works to assess hazards that, in addition to epidemiological studies,
consider a range of experimental animal and mechanistic data to
reach conclusions (Rooney et al. 2014; Woodruff and Sutton
2011). We see opportunities for collaboration between IHME and
NTP to advance the use of systematic review in environmental
health. GBD is in the process of implementing a quantitative data-
driven evidence scoring approach that will likely yield different
categories of evidence for risk–outcome pairs, leading to a series of
burden estimates based on different levels of evidence.

Finally, given concerns about the influence of funding on study
findings (Bero 2017; Friedman and Friedman 2016; Gennaro and
Tomatis 2005; Huff 2007; Lundh et al. 2017), any assessment of
data quality and causality in EH should include consideration of
conflict of interest. The recently developed Navigation Guide sys-
tematic review method includes “conflict of interest” as a domain
in its risk of bias assessment (Woodruff and Sutton 2014), and we
would encourage a similar approach for the GBD.

Global exposure assessment. To best inform the GBD, expo-
sure measurements need to capture variability by sex, age,

Table 2. Suggested examples of risk/outcome pairs for consideration by the Global Burden of Disease Study (GBD).a

Risk factor Outcomeb
Global exposure assessment

available/feasible for risk factor?

Air pollution
(PM2:5, ozone, NO2)

Dementia (Power et al. 2016) Yes (currently in GBD) (Stanaway et al. 2018)
Intellectual disability (Bennett et al. 2016; Clifford et al. 2016)
*Low birth weight (Dadvand et al. 2013; Fleischer et al. 2014)
*Hypertension (Brook et al. 2010)
*Asthma (Achakulwisut et al. 2019; Anenberg et al. 2018;
Guarnieri and Balmes 2014; Khreis et al. 2017)

Arsenic (nonoccupational) Intellectual disability (Grandjean and Landrigan 2006) Regional assessments have been conducted (e.g., Bangladesh
(Smith et al. 2000); Latin America (Bundschuh et al. 2012)

Lung cancer (IARC Working Group 2012) Needs to be scaled and modeled for global coverage
Bladder cancer (IARC Working Group 2012)
Skin cancer (IARC Working Group 2012)

Lead *Cardiovascular disease (direct effects; low-level exposures)
(Lanphear et al. 2018)

Yes (currently in GBD) (Stanaway et al. 2018)

Methylmercury Intellectual disability (Grandjean and Landrigan 2006) Yes (Basu et al. 2018)
Organophosphate pesticides Intellectual disability (Grandjean and Landrigan 2006) Included in national and regional biomonitoring (CDC 2019)

Needs to be scaled and modeled for global coverage
Phthalates BMI (Attina et al. 2016; Legler et al. 2015) Included in national and regional biomonitoring (CDC 2019)

Diabetes (Attina et al. 2016; Legler et al. 2015) Needs to be scaled and modeled for global coverage
Infertility (Attina et al. 2016; Hauser et al. 2015)

Per- and polyfluoroalkyl
substances

BMI (Liu et al. 2018) Included in national and regional biomonitoring (CDC 2019)
Low birth weight (Johnson et al. 2014) Needs to be scaled and modeled for global coverage

Polybrominated diphenyl
ethers

Intellectual disability (Grandjean and Landrigan 2006) Included in national and regional biomonitoring (CDC 2019)
Needs to be scaled and modeled for global coverage

Polychlorinated biphenyls Intellectual disability (Grandjean and Landrigan 2006) Included in national and regional biomonitoring (CDC 2019)
Melanoma (IARC 2016) Needs to be scaled and modeled for global coverage

aNot comprehensive; selected examples only.
bSome of the outcomes listed here (e.g., hypertension, BMI, low birth weight) are actually risk factors for outcomes in the GBD rather than outcomes themselves. Thus, future model-
ing would be conducted as mediation analyses, evaluating how, for example, low birth weight mediates the association between an EH exposure and an established GBD outcome.
*Indicates consideration for inclusion in GBD2019.
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seasonality, and national/subnational geography, so that expo-
sure models can calculate age–sex, regional, and time-of-year–
specific estimates of mortality or DALYs. Although it is chal-
lenging to estimate exposure to many environmental risk factors,
air pollution has fairly robust exposure estimates worldwide. In the
most recent iteration of the GBD, data coverage for subnational
geographies was as follows: ozone pollution data: 100% (although
some of the ozone data are based on chemical transport models);
ambient PM: 58%; and household air pollution from solid fuels:
85.5% (Stanaway et al. 2018). Additional tools that could be
leveraged in the future include regional emissions inventories
(Kurokawa et al. 2013), low-cost samplers and sensors (Austin
et al. 2015; Nieuwenhuijsen et al. 2015; O’Connell et al. 2014),
and the use of high-resolution satellite imagery (Garcia-Saenz
et al. 2018).

Estimating global exposure to lead is more difficult, however,
and emblematic of the challenges presented by many other EH
exposures. Population exposure to lead in the mid- to late-20th
century was dominated by inhalation of leaded gasoline, and B-
Pb was accurately modeled using data on measured air lead lev-
els, sales of leaded gasoline, and traffic density. However, the
current predominant sources of lead exposures are mostly due to
contamination of food, water, dust, and soil, which are more chal-
lenging to model. Thus, it is necessary to rely on population-
specific B-Pb. However, as noted earlier in the lead case study, in
the most recent iteration of the GBD, B-Pb data were lacking for
many countries in Africa and central Asia; moreover, global data
were available for only 39.6% of the subnational geographies
(Forouzanfar et al. 2016), forcing the GBD to rely on data
derived from exposure to leaded gasoline, likely leading to biased
estimates where other routes and sources of exposure are not con-
sidered (i.e., food, water, occupational exposures). An example is
India, which phased lead out of gasoline in 2000, but recent data
indicate continuing high levels of B-Pb in children (Chaudhary
et al. 2018).

Going forward, innovations will be needed on multiple levels
to address the challenge of assessing global exposures for new
pollutants being considered for entry into the GBD, with particu-
lar challenges posed by the lack of data for most exposures of
concern, especially in LMICs. Some of the innovations could be
technological, with the development of new, low-cost tools for
measuring pollutants in biological as well as environmental
media. Other innovations may involve diversifying sources of
data. For example, with respect to methylmercury, arsenic, trace
metals, pesticides, PBDEs, and other exposures found to occur
mainly via diet (Schecter et al. 2006; Williams et al. 2007; Ysart
et al. 2000), extrapolations could be made from market-basket
surveys (Radwan and Salama 2006) and drinking water assess-
ments (Villanueva et al. 2017). Computational approaches should
also be considered. A 2016 U.S. National Academies of Sciences
report detailed the promise of modeling approaches that can ag-
gregate information on chemical properties and emission sources
with environmental fate and transport characteristics to predict
near- and far-field human exposures to a large number of pollu-
tants (National Academies of Sciences 2017a).

Perhaps the most important innovation that will be key to
advancing assessment of global pollutant exposures for the GBD
will be soliciting the involvement of subject-matter experts around
theworld (and training themwhere few exist). TheGBDproject cur-
rently involves more than 3,600 researchers in more than 145 coun-
tries. However, few of the researchers are exposure or EH scientists;
and of these exposure or EH experts, there is limited representation
among LMICs. Efforts have already started in this area through the
promotion of GBD symposia in relevant professional societies, such
as the International Society for Environmental Epidemiology

(ISEE) and the International Society of Exposure Science (ISES). In
addition, Landrigan et al. recently created the Global Pollution
Observatory on Pollution and Health as a consortium to collect,
archive, and analyze data on pollution and disease worldwide
(Landrigan et al. 2018b). Such an effort will meet its promise only
with the involvement of LMIC-based researchers, particularly
because the Lancet Commission on Pollution and Health estimated
that 92% of pollution-related mortality occurs in these regions
(Landrigan et al. 2018a). The cultivation of regional expertise and
engagement in this initiativewill be critical not only in terms of gath-
ering data relevant to exposures, but also in terms of providing inter-
pretation of the data in relation to nuances such as local behaviors,
industrial and social trends, and national and regional chemicals
management policies. Efforts to increase EH capacity of individuals
and institutions across LMICs, as well as to strengthen and help sus-
tain regional and global networks, continue to be promoted through
efforts like Fogarty International Center’s GEOHealth program and
Canada’s IDRCEcoHealthChairs program.

A related issue in the field of exposure is the estimation of the
TRMEL. As noted earlier, a critical step in calculating the attrib-
utable burden for each risk–outcome pair is the estimation of the
exposure counterfactual or TMREL. Relatively small changes in
the TMREL can result in relatively large changes in the PAF,
underscoring the importance of making accurate estimations.
However, this can be challenging for naturally occurring pollu-
tants, such as arsenic, or for others that have imbued the ecosys-
tem and entered the food chain in various ways, such as mercury.
Establishing a TMREL for climate-related risk factors, such as
heat, will also be challenging and an area for discussion in the
coming years.

Examples of Candidate EH Risk Factors for Inclusion
in the GBD
Neurotoxicants. Lead is the best-studied neurodevelopmental tox-
icant, but there are others for which there is strong evidence and
widespread exposure. Evidence is strong or rapidly accumulating
for the impact of methylmercury, arsenic, polychlorinated biphen-
yls, polybrominated diethyl esters (PBDEs), organophosphate pes-
ticides, and particulate air pollution on diminished cognitive
function, shortened attention span, and behavioral disruption; each
has been subject to systematic or similarly in-depth reviews
(Bennett et al. 2016; Clifford et al. 2016; El Majidi et al. 2013;
Grandjean and Landrigan 2014; Karagas et al. 2012; Lam et al.
2017; Levy 2015; Payne-Sturges et al. 2019; Sheehan et al. 2014;
Tolins et al. 2014). Extensive use of these chemicals has resulted in
pervasive human exposure, and virtually everyone has detectable
levels of multiple neurotoxicants in their bodies (CDC 2019).
Moreover, diminished cognitive function is associated with even
the lowest measurable concentrations for many of these neurotoxi-
cants (Grandjean and Landrigan 2014).

The health impacts of exposures to these other neurotoxicants
should be quantified to illustrate the benefits of exposure reduc-
tions. Especially robust dose-response and exposure data have
been developed for methylmercury, for example (Basu et al.
2018; Karagas et al. 2012). IHME could evaluate the effects of
these exposures using the newly developed human capital index;
a similar analysis was recently published for an extended group
of environmental chemicals (Grandjean and Bellanger 2017).
However, despite the documented neurobehavioral effects of
these risk factors, limited exposure data present a challenge in
developing global exposure models. For others, data may not be
yet sufficient to meet the GBD's criteria for causality. Due to
these limitations, none of these other neurotoxicants are currently
included in the GBD. Inclusion of these and other chemicals
would serve to add urgency to the need to address their public
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health impacts. A phased approach to considering other neuro-
toxic agents could begin with an evidence-scoping phase to iden-
tify the information gaps for the major neurotoxicants listed
above (e.g., the lack of exposure data or the lack of evidence to
support causality). In subsequent steps, research efforts could be
directed to fill the key data gaps, and individual risk–outcome
pairs could be addressed in subsequent GBD reviews.

Endocrine-disrupting chemicals (EDCs). Growing evidence
documents the link between EDC exposure and numerous
adverse outcomes, including hormone-related cancers, infertility,
reproductive dysfunction, birth defects, obesity, diabetes, and
neurobehavioral disruptions (Bergman et al. 2013; Diamanti-
Kandarakis et al. 2009; Gore et al. 2015). Examples of specific
risk–outcome pairs, among many, include bisphenol A and child-
hood obesity, and benzyl-phthalates and butyl-phthalates and
male infertility (Attina et al. 2016). Prior work external to the
GBD highlights the enormous economic burden due to these
exposures in the United States and the European Union:
$340 billion and $217 billion, respectively (Attina et al. 2016;
Trasande et al. 2016). Integration of these efforts into future itera-
tions of the GBD would result in the expansion of EDC burden
estimates to cover LMICs. This expansion is particularly impor-
tant because LMICs are predicted to become the chief producers
of synthetic chemicals, many of which are EDCs, by 2030
(OECD 2008); increased utilization and consumption in those
countries are also anticipated. Additionally, given the worldwide
visibility of the GBD, estimates for EDCs would provide further
visibility to the concern regarding these ubiquitous exposures.

There are several challenges to incorporating EDCs into the
GBD; we highlight selected examples here. First, there is dis-
agreement about the definition and criteria for an adverse effect
in the context of the endocrine system (Woodruff et al. 2008;
Zoeller et al. 2012; Zoeller et al. 2014). These debates are in
some ways analogous to the discussion of lead and IQ decre-
ments, because some EDC-related changes may be considered
adverse even without reaching thresholds based on clinical con-
structs for apical end points. Second, much of the data on EDCs
are generated from in vitro and in vivo studies; in addition, meth-
ods for integration of this evidence into the GBD decision-
making process are not well defined, despite this being an active
area of research (National Academies of Sciences 2017b;
Vandenberg et al. 2016). Additionally, because there is still much
uncertainty about the health effects of some EDCs, their incorpo-
ration into the GBD may prompt the need to expand the estima-
tion process to allow for differing tiers of certainty.

Another challenge is obtaining robust exposure estimates for
EDCs across the globe. Nevertheless, even with imperfect expo-
sure measurements and uncertainties in risk functions, the addi-
tion of these and other EH risk factors is crucial given the large
burden estimations developed by other groups as cited above; an
important aspect is that, as stated in the GBD Protocol, “an uncer-
tain estimate, even when data are sparse or not available, is pref-
erable to no estimate because no estimate is often taken to mean
no health loss from that condition” (IHME 2018). Although some
degree of uncertainty is acceptable, we also recognize that data to
inform models must be adequate to produce estimates that are
credible and provide enough certainty to be useful to the public
health community and policy makers. To this end, we encourage
further research to evaluate EDC exposure levels around the
world.

Special Cases of Climate and Climate Change
Climate change presents a challenge for the GBD, as it cannot
easily be captured as a discrete exposure but is instead repre-
sented by multiple hydrometeorological indicators. Unlike other

exposures, there is no theoretical minimum future climate change
exposure that can be attained, and it is unclear what the baseline
level for climate risk should be, given its unique status as a con-
stantly changing global system. Climate change–related expo-
sures will continue to increase in the next few decades, no matter
the extent of reductions of greenhouse gas emissions. For present
and future climate-related risks, the risk–outcome pathways (e.g.,
undernutrition, malaria, diarrheal disease, and injury) are often
indirect, making attribution challenging.

Because climate-related health impacts are closely tied with
local mediating factors, the same hydrometeorological events
affected by climate change may have very different consequences
within and between locations and populations, making it challeng-
ing to extrapolate health outcomes in low-income settings from
studies conducted in higher-income settings, an issue common to
many environmental exposures. Although researchers have con-
siderable experience with projecting the magnitude and pattern of
certain climate-sensitive health outcomes (such as mortality asso-
ciated with heat or malaria) at local to international geographic
scales (Ebi et al. 2018), projecting other climate-sensitive health
outcomes, such as the disease burden associated with climate-
driven conflict or migration, is more challenging. GBD incorpo-
rated a limited set of climate risks in its 2000 analysis (McMichael
et al. 2004) but has opted not to make attributions of climate risk in
recent reports, in part because of the aforementioned challenges.
Nevertheless, given the importance of estimating the disease bur-
den from climate-related risk factors and demand from health min-
istries for such estimates, the GBD team has taken a first step to
robustly estimating health impacts associated with climate change
by beginning to incorporate risks related to suboptimal ambient
temperature exposure, a process that is currently ongoing and
might be expanded to include scenario-based projections.

A variety of climate-sensitive risk–outcome pair additions and
modifications might be considered in future iterations of the GBD.
For example, there is a well-documented association between am-
bient temperature and ground-level ozone formation, as well as
growing evidence for temperature-driven increases in PM2:5 in
drier regions, both of which are associated with increased morbid-
ity and mortality (Achakulwisut et al. 2018; Orru et al. 2013). In
addition, higher carbon dioxide (CO2) concentrations are associ-
ated with reduced micronutrients, protein, and B vitamins in staple
crops, particularly wheat and rice (Zhu et al. 2018). These trends
may exacerbate micronutrient deficiencies that are associated with
a variety of physical and cognitive ailments (Bailey et al. 2015).
Other risk–outcome pairs could be incorporated into future itera-
tions of the GBD, including those associated with risks, such as
precipitation changes, and outcomes, such as injuries, diarrheal
disease, undernutrition, cardiovascular disease, and mental health,
among others (Smith et al. 2014). Moreover, risks currently in the
GBD, such as extreme weather events, will likely require attribu-
tion to climate change as the science becomesmore robust. In addi-
tion, climate-related risk factors affect upstream drivers of health
and welfare outcomes, including economic productivity, fertility,
migration, and governance capacity. Altogether, these intercon-
nected relationships present potentially far-reaching consequences
for global health.

Modeling challenges: Aeroallergens and asthma as an exam-
ple.Many diseases included in the GBD have some climate sensi-
tivity that is not currently captured, sometimes as a result of data
and modeling limitations. Multiple risk factors map to each out-
come, and data are not of sufficient quality or spatiotemporal re-
solution to characterize the attributable burdens associated with
each individual driver. An example is asthma associated with
aeroallergens. Climate change is increasing allergenic pollen ex-
posure and thus could increase the burden of allergic disease.
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Aeroallergens are associated with allergic rhinitis, allergic
asthma, and other conditions, and both allergic asthma develop-
ment and asthma exacerbations are driven by aeroallergen expo-
sure. Climate change has increased the length of the pollen
season for certain allergens in North America above 44°N by
2 to 4 wk since 1995 (Ziska et al. 2011). However, relatively
few studies have documented the dose–response relationships
between pollen seasonality or magnitude and specific health out-
comes. One study suggests moderate and severe climate change
could increase oak pollen season length and associated asthma
emergency department visits in the eastern United States by 5%
and 10%, respectively, by 2090, translating into tens of thousands
of pollen-related asthma emergency department visits (Anenberg
et al. 2017). Although allergic disease is not included as a specific
outcome in the GBD, asthma caused 23.7 million DALYs in
2016, up to half of which may be attributed to allergies (Galán
et al. 2010; Pearce et al. 1999). Thus, the DALY burden of
climate-induced changes in pollen-season length and intensity
could be substantial. Nevertheless, attributing changes in allergy
burden to climate change is challenging, given limitations in risk
factor (i.e., aeroallergen) and outcome (i.e., allergic asthma) data,
as well as a paucity of robust studies that might support dose–
response characterization for this risk–outcome pair. This uncer-
tainty highlights a need for funders to the support collection of
data to facilitate modeling of this climate-sensitive outcome.

Climate projections. An important goal relates to modeling
the possible consequences of climate change on the future burden
of climate-sensitive health outcomes. This modeling is particu-
larly important for decision-makers because the consequences of
climate change, such as exposure to airborne PM from wildfires
and soil dust, are likely to increase considerably in the coming
decades. Modeling needs to consider not just changes in climate-
related hazards and population exposure to these hazards, but
also factors that affect sensitivity to the exposures and the
capacity to manage changing exposures, such as changes in popu-
lation distribution and investment in building climate-resilient
health systems (Sellers and Ebi 2017).

The GBD is currently developing scenario-based forecasting
models for disease burdens, which will require years of incre-
mental improvements (Foreman et al. 2018). The current iteration
of this forecasting model does not explore the health effects of
climate change, although we believe this framework can be
extended to incorporate these impacts. Such an extension will
likely require incorporating feedbacks from climate shocks onto
sociodemographic drivers, estimating the health impacts associ-
ated with adaptation and mitigation measures, as well as explor-
ing potential health impacts associated with events lacking in
historical precedents, such as sea-level rise.

To facilitate model development, we suggest convening a
broad range of climate and health experts in the natural and social
sciences to advise this work, including experts researching thermal
extremes, vector-borne disease, climate and pollution, undernutri-
tion, sea-level rise, migration, and other relevant subject areas.
These experts would help elucidate the global burden of disease
related to climate change in four ways: a) by estimating the climate
change–attributable impact on climate-sensitive health outcomes
that are in the GBD but do not disaggregate upstream drivers such
as climate change (e.g., malaria and waterborne diseases); b) by
tracking changes over time in dose–response relationships for
climate-sensitive risk–outcome pairs and updating models accord-
ingly; c) by evaluating the addition of new risk–outcome pairs to
incorporate into future GBD projections as evidence builds; and d)
by examining the impact of climate-change mitigation policies on
health effects, as is currently done by GBD for policies related to
the SDGs (Lozano et al. 2018). Finally, GBD should seek to

harmonize its forecasts with other established methods for estimat-
ing how different development scenarios, including projections of
demographic and socioeconomic change, could interact with cli-
mate change to modify projected health burdens, such as the
Shared Socioeconomic Pathways (Sellers and Ebi 2017).

Conclusion
The GBD-PHI is a recently emerged virtual initiative being
advanced by a community of scientists who come from a diverse
array of disciplines but who are focused on the task of elucidating
the true environmental footprint on the global burden of disease,
disability, and impaired human capital. The ultimate aim is to
provide policymakers with the informational tools for reducing
and preventing these impacts as each country and region strives
to meet the SDGs. As the initiative gets underway, this paper
aims to highlight some of the key challenges and opportunities
for enhancing the characterization of EH risk factors in the GBD
(Appendix 1). Although air pollution and lead are already
included in these analyses, the limitations highlighted above sug-
gest that several specific enhancements could further improve the
accuracy and utility of these globally influential estimates.

Collaboration from within the EH community, including efforts
to leverage existing research, can expedite and facilitate the incorpo-
ration of new risk–outcome pairs. Ancillary studies producing
global or region-specific burden estimates for newEH risk–outcome
pairs using methods closely aligned with the GBD can provide the
scientific rationale for inclusion. Investigators who have developed
a set of global exposure estimates can combine these with either
published or de novo meta-analytic concentration–response sum-
maries and GBD baseline disease incidence information to develop
proof-of-concept global disease burden estimates. An example is
the recent quantification of NO2-attributable pediatric asthma
(Achakulwisut et al. 2019). It would be important for analyses to
align exposure–response functions with the specific outcome classi-
fications currently included in the GBD or to develop methods to
linkGBDoutcomes to other outcomes used in epidemiological stud-
ies. Further, ancillary studies may provide more in-depth insight
into the role of pollution sources or the potential benefits of various
policy scenarios on disease burden, as has become common with
respect to air pollution (GBD MAPS Working Group 2018; Zhang
et al. 2017; Zhao et al. 2018).

To generate quantitative estimates for the GBD, adequate
data must exist to credibly estimate exposure to the risk factor for
all countries and timeframes included. Such data do not currently
exist for most EH risk factors. We predict that the proliferation of
new technologies and the sources of “Big Data” on population
health scales will improve exposure assessment to support the
addition of new EH risk–outcome pairs in future iterations of the
GBD, and we encourage research to accelerate this process (Hu
et al. 2017). The GBD-PHI can support progress by building col-
laborations with EH colleagues conducting such research and
through partnerships with, among others, the U.S. National Institute
of Environmental Health Sciences (NIEHS), the WHO, the United
Nations Environment Programme (UNEP), the Intergovernmental
Panel on Climate Change (IPCC), ISEE, ISES, the Global
Observatory on Pollution and Health, and the HEI. GBD scien-
tists can play a role by highlighting key gaps in exposure data to
inform relevant research.

GBD estimates are influential at the local, subnational,
national, and international levels, and they help all governments
evaluate comparative risks and make evidence-based decisions to
improve public health. These estimates have an especially impor-
tant role in LMICs, which often experience particularly high bur-
dens from EH exposures, and for countries that lack the resources
to estimate risk exposure and risk-attributable burden internally.
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As the GBD expands its breadth with regard to EH risk–outcome
pairs, its results can facilitate expanded economic analyses and pol-
icy assessments. Further consideration of the range of effects on
human capital, including both education and health, is crucial.
Onlywith adequate quantification of the adverse impacts of a broad
range of EH exposures will governments and policy makers be
positioned to make well-informed decisions to appropriately allo-
cate resources for public health. These efforts, whichwill be further
described in a follow-up manuscript, are particularly important for
reaching ambitious global targets, such as the SDGs, and for more
accurate quantification of the risks and benefits of pollution mitiga-
tion and prevention efforts.
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